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Abstract—In order to shift the business of power electronics 
systems such as power converters using power devices from a sell-
out type to a subscription type that provides the best service for each 
user, digital gate ICs that drive and sense power devices and are 
connected to the network will be a key technology. This paper 
presents several examples of the development of digital gate ICs that 
integrate a sensor, a controller, and a digital gate driver to digitally 
control gate current in fine time steps on a single chip. 

 

1  Introduction 

Fig. 1 shows a block diagram of a conventional power converter 
including a gate driver IC. The gate driver IC is a circuit that switches 
power devices by interfacing between a low-voltage controller and a 
high-voltage main circuit. Specifically, the gate driver IC drives the 
gate terminals of power devices by amplifying the 5-V amplitude 
on/off signal from the PWM controller IC to the gate voltage (VGE) of 
5 V to 18 V and the gate current (IG) of 1 A to 20 A. Many gate driver 
ICs in products detect the over-current and/or over-voltage of IGBTs 
and output an alarm signal. Conventional gate driver ICs are too 
simple in functionality to enable a shift in the business of power 
electronics systems, such as power converters using power devices, 
from a sell-off of products to a subscription-based business that 
provides the best service for each user. 

In contrast, Fig. 2 shows the proposed subscription-based service 
platform, where the key technology is a digital gate IC that drives and 
senses power devices and connected to a network. A sensor circuit 
integrated in a digital gate IC measures the operating conditions (e.g., 
IC, VCE, and junction temperature) and degradation status (e.g., 
threshold voltage and bond wire lift-off) of power devices and sends 
the measured results to the service provider’s cloud over the network. 

Service providers use AI to analyze sensor data from many users 
and provide the best service (e.g., digital gate driver parameters) for 
each user. This paper presents digital gate drivers developed to 
realize digital gate ICs, including a digital gate driver IC integrating 
dIC/dt sensor and automatic timing control for IGBTs, a single-input 

dual-output digital gate driver IC for equalizing drain current of two 
parallel-connected SiC MOSFETs, and a large current output digital 
gate driver using half-bridge DAC IC and two power MOSFETs for 
IGBTs. 

 

2  Digital Gate Driver IC Integrating dIC/dt Sensor and 
Automatic Timing Control for IGBTs 

2-1  Research Motivation 

A lot of active gate drivers (AGDs), where the gate driving waveform 
is controlled during the turn-on/off transients, have been proposed to 
reduce both the switching loss and the switching noise of power 
devices. AGDs can be classified into two types, open-loop control [1-
6] and closed-loop control [7-19]. The closed-loop AGDs are required 
instead of the open-loop AGDs, because the optimal driving 
waveform changes depending on the operating conditions (e.g. load 
current and temperature) [20]. Fig. 3 summarizes the design choices 
in conventional closed-loop AGDs. To make the closed-loop AGDs 
practical, the following three points are required: (1) single-chip 
integration instead of PCB implementation for lower cost, (2) real-
time control instead of iterative control to reliably handle dynamic 
change of operating conditions, and (3) programmable AGDs instead 
of fixed-function AGDs that require individual optimization for 
different product variety of power devices. In the closed-loop AGDs, 
however, no previous paper has realized (1) and (2) simultaneously, 
and no previous paper on (3) has been published.  

To solve the problems, a digital gate driver (DGD) IC with fully 
integrated automatic timing control (ATC) function for IGBTs that 
realizes all of (1) to (3) is proposed [21]. The design choices in this 
work are shown in blue in Fig. 3. 

 

2-2  Circuit Design 

Figs. 4 and 5 show a circuit schematic and a timing chart of the 
proposed DGD IC with ATC, respectively. In the following, turn-on is 
discussed, whereas the exact same is true for turn-off. The IC 
includes dIC/dt detector for the state change, controller for ATC, and 
a 6-bit current-source type digital gate driver with variable gate 
current (IG) in 64 levels, where IG = nPMOS × 48 mA and nPMOS is an 
integer from 0 to 63. At turn-on, an active gate driving is performed 

 
Fig. 1. Block diagram of conventional power converter including 
gate driver IC. 

 
Fig. 2. Proposed subscription-based service platform, where key 
technology is digital gate IC. 
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Fig. 3. Design choices in closed-loop AGDs. This work is shown 
in blue. 

 
Fig. 4. Circuit schematic of proposed DGD IC with ATC. 
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in three slots from t1 to t3 with different IG of strong (n1) -weak (n2) -
strong (n3), and this driving method is defined as stop-and-go gate 
drive (SGGD) [22]. n1 to n3 are preset by a digital input (Scan In), 
while t1 and t2 are automatically determined by ATC. An important 
feature of this IC is the full integration of t1 and t2 real-time automatic 
control functions on a single chip. The real-time control of t1 and t2 is 
done by detecting dIC/dt by sensing the voltage (VeE) of the parasitic 
inductance (LeE) between Kelvin emitter and power emitter in Fig. 4, 
because VeE = − LeE (dIC/dt), where IC is the collector current. 
Specifically, as shown in Fig. 5, the end timing of t1 is determined by 
detecting the negative VeE at the beginning of IC flow using a 
comparator with the reference voltage of VREFL, and the end timing 
of t2 is determined by detecting the positive VeE at the timing 
immediately after IC overshoots using a comparator with the 
reference voltage of VREFH. Fig. 6 shows a die photo of DGD IC 
fabricated with 180-nm BCD process. 

 

2-3  Measured Results 

Figs. 7 and 8 show a circuit schematic and a measurement setup of 
the double pulse test using the developed DGD IC and an IGBT 
module (FS100R12N2T4, 1200 V, 100 A), respectively. Figs. 9 (a) 
and (b) show timing charts of the conventional single-step gate drive 
(SSGD) and the proposed SGGD for comparison, respectively. In 
SSGD, n1 is varied, which emulates a conventional gate driver with 
varied gate resistance. In SGGD, (n1, n2, n3) are preset to (27, 2, 27), 
and t1 and t2 are automatically determined by ATC. Figs. 10 (a) and 
(b) show the measured IC and gate-emitter voltage (VGE) waveforms 
in SGGD with ATC with varied load current (IL) from 10 A to 80 A, 
respectively. Fig. 10 (c) shows the measured t2 vs. IL. It is clearly 
observed that as IL increases, t1 remains constant, while t2 is 
automatically increased by ATC. Figs. 11 (a) to (c) show the 
measured switching loss (ELOSS) vs. the collector current overshoot 
(IOVERSHOOT) of the conventional SSGD and the proposed SGGD at IL 
= 20 A, 50 A, and 80 A, respectively. The black curves show the 
trade-off curves of the conventional SSGD with varied n1 from 2 to 
63. In all cases, the proposed SGGD has lower ELOSS and lower 
IOVERSHOOT than the conventional SSGD. In Fig. 11 (c), Point A to 
Point C are defined, where Point B is the proposed SGGD, and Point 
A and Point C are the conventional SSGD with n1 = 4 and 63, 
respectively. IOVERSHOOT of Point A and Point B are almost the same. 
At IL = 80 A, compared with the conventional SSGD, the proposed 
SGGD reduces ELOSS by 38 % under IOVERSHOOT-aligned condition 
and reduces IOVERSHOOT by 18 % under ELOSS-aligned condition. Figs. 
12 (a) to (c) show the measured waveforms in Point A, Point B, and 
Point C in Fig. 11 (c), respectively. Fig. 12 (b) clearly shows that the 
start of IC flow and IC overshoot are properly detected by VeE, and that 
SGGD is realized with t1 and t2 correctly controlled. Table I shows a 
comparison table of the closed-loop AGDs. This work is the first work 
achieving the fully integrated IC, the real-time control, and the 
programmable IG in the closed-loop AGDs. 

 
Fig. 5. Timing chart of proposed DGD IC with ATC. 

 
Fig. 6. Die photo of DGD IC with ATC. 

 
Fig. 7. Circuit schematic of double pulse test. 

 

Fig. 8. Measurement setup. 

 
Fig. 9. Timing charts for turn-on. 
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3  Single-Input Dual-Output Digital Gate Driver IC for 
Equalizing Drain Current of Two Parallel-Connected SiC 
MOSFETs 

3-1  Research Motivation 

In power electronics systems, when large current exceeding the 
rated current of a power device is applied, it is common to connect 
multiple power devices in parallel. Due to variations in the 
characteristics of the power devices, however, the current 
concentrates in part of the devices and the heat generation due to 
losses is localized, which degrades the reliability of the power 

devices. In the conventional method of parallel connection of power 
devices, the characteristics of the power devices are measured in 
advance, and power devices with matching characteristics are 
selected for parallel connection, which will increase the cost. 
Therefore, a technology to automatically equalize the current of 
power devices connected in parallel is required. The problem with 
the previous papers of current equalization is that they require a lot 
of ICs including such as current sensors [23–24], timing control 
circuits [14, 23–25], and regulators for gate voltage amplitude control 
[26–27], which will also increase the cost. 

To solve the problems, a single-input, dual-output (SIDO) digital gate 
driver (DGD) IC, integrating all necessary circuits including two 6-bit 

 
Fig. 10. Measured results in SGGD with ATC with varied IL. (a) IC waveforms. (b) VGE waveforms. (c) t2 vs. IL. 

 
Fig. 11. Measured ELOSS vs. IOVERSHOOT of conventional SSGD and proposed SGGD at IL = 20 A, 50 A, and 80 A. 

 
Fig. 12. Measured waveforms in Point A, Proposed Point B, and Point C in Fig. 11 (c) at IL = 80 A. 
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DGDs, two current sensors, and a controller, is proposed [28] to 
automatically equalize the drain current (ID) of two parallel-connected 
SiC MOSFETs. The proposed SIDO DGD IC will enable a high-
performance power electronics systems using SiC MOSFETs at low 
cost, because SiC MOSFETs with large variations can be connected 
in parallel without prior testing and selection. 

 

3-2  Circuit Design 

Fig. 13 shows a circuit schematic of the fabricated half-bridge circuit 
and SIDO DGD IC. The half-bridge consists of three SiC MOSFETs 
(Q1 – Q3 : SCT3030AL, 650V, 70A) including the low-side two-
parallel Q1 and Q2. In order to equalize DC (ID1,DC, ID2,DC) and surge 
(ID1,SURGE, ID2,SURGE) components of ID of Q1 and Q2 (ID1, ID2) with 

variations in device characteristics by controlling the gate waveforms, 
SIDO DGD IC is newly developed. Except for two PCB Rogowski 
coils [29], all the necessary circuits including two 6-bit DGDs, two 
current sensors, and a controller are fully integrated into a single chip. 

SIDO DGD IC has 24 bits of control bits. nPMOS1 [5:0] and nNMOS1 [5:0] 
control the gate current (IG1) for Q1, while nPMOS2 [5:0] and nNMOS2 
[5:0] control the gate current (IG2) for Q2. Fig. 14 shows the circuit 
schematic of DGD1 for Q1 in Fig. 13. IG1 can be varied in 64 levels at 
turn-on depending on 6-bit digital signals nPMOS1 [5:0], which is 
defined as nPMOS1, where nPMOS1 is an integer between 0 and 63. The 
64-level IG1 control from 0 A to 6 A in 95 mA increments at turn-on of 
Q1 is achieved by selectively turning on or off six pMOSFETs with 
binary weighted gate widths (WP, 2WP, 4WP, 8WP, 16WP, 32WP) in 
the output stage depending on nPMOS1 [5:0]. The same design is 
applied to the turn-off of Q1 by controlling nNMOS1 [5:0]. 

 

3-3  Measured Results 

Fig. 15 shows a die photo of SIDO DGD IC fabricated with 180-nm 
BCD process. Fig. 16 shows a photo of PCB of the half bridge.  

Fig. 17 shows the timing chart and the measured waveforms of VGS1 
& VGS2 and ID1 & ID2 at IL = 40 A. In this work, the threshold voltage of 
Q1 (VTH1) is assumed to be lower than that of Q2 (VTH2). Among the 
eight parameters of nPMOS1, nNMOS1, nPMOS2, and nNMOS2 in the on and 
off states of Q1 and Q2, nNMOS1 in the on state is controlled to equalize 
ID1,DC and ID2,DC by digitally controlling the gate voltage amplitude, 
and nPMOS2 in the on state is controlled to equalize ID1,SURGE and 
ID2,SURGE by digitally controlling the gate current at turn-on. Vice versa, 
if VTH1 > VTH2, nNMOS2 and nPMOS1 are controlled. Compared with the 
conventional gate driving (Fig. 17 (a)), the proposed gate driving (Fig. 
17 (c)) with nNMOS1 and nPMOS2 control reduces the difference 

 
Fig. 13. Circuit schematic of fabricated half-bridge circuit and 
proposed SIDO DGD IC. 

 
Fig. 14. Circuit schematic of DGD1 for Q1. 

 
Fig. 15. Die photo of SIDO DGD IC. 

 

Fig. 16. Photo of PCB of half bridge. 
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Table II  Comparison table of DGD ICs 
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between ID1,DC and ID2,DC from 2.6 A to 0.13 A by 95% and the 
difference between ID1,SURGE and ID2,SURGE from 1.9 A to 0.32 A by 
83%. 

Table II shows a comparison table of DGD ICs. This work is the 
world's first IC that achieves ID equalization of two parallel MOSFETs 
by integrating two DGDs, two current sensors, and a controller. 

 

4  Large Current Output Digital Gate Driver Using Half-
Bridge DAC IC and Two Power MOSFETs for IGBTs 

4-1  Research Motivation 

High-voltage, large-current IGBT modules (e.g. ratings of 6500 V, 
1000 A) are used in many social infrastructure fields including high-
voltage DC transmission systems and train traction systems [30]. In 
addition to improving IGBTs themselves, gate driving technologies 
can be used to reduce the loss of IGBTs. Recently, many papers 
have been published on the simultaneous reduction of both switching 
loss (ELOSS) and switching noise by active gate waveform control 
using digital gate drivers (DGDs) [1-5, 31]. Conventional DGDs, 
however, are difficult to apply to the 6500 V, 1000 A IGBT modules, 
because the modules require DGD with (1) the output voltage swing 
(VSWING) of ± 15 V to prevent a false turn-on and (2) the gate current 
(IG) of up to around 20 A because of the large gate capacitance. For 
example, VSWING is 3.3 V [2], 5 V [3–5], 15 V [1], and 18 V [31], and 
the maximum IG is between 5 A [1, 3] and 42 A [4].  

To solve the problems, an 8-bit DGD using a half-bridge digital-to-
analog converter (HB DAC) IC and two power MOSFETs is proposed 
[6] to enable VSWING of ± 15 V and large IG up to 58 A for the 6500 V, 
1000 A IGBT modules. 

 

4-2  Circuit Design 

Figs. 18 to 20 show a circuit schematic of the proposed DGD 
including HB DAC IC and two power MOSFETs (Q1 and Q2 : 
BSC094N06LS5, 60 V, 47 A), a block diagram of the proposed HB 
DAC IC, and a timing chart of DGD, respectively. DGD is a current-
source gate driver. The novelty of this work is that power MOSFETs 
are used as the output stage of the gate driver to achieve large IG, 
and DGD operation is achieved by digitally controlling the gate 
amplitude (VGSH and VGSL) of the power MOSFETs operating in the 
saturation region instead of the linear region using the proposed HB 
DAC IC to achieve the current-source gate driver. As shown in Fig. 
19, HB DAC IC includes two DACs operating with different power 
supply rails, shift registers for serial inputs to reduce the number of 
input pins, and an edge detector to generate pulse signals from 
externally supplied “Timing” signal. HB DAC IC does not include the 
driver transistors. If all the functions are integrated into a single IC, 
the chip size will be huge and the cost will be high. By controlling the 
gate voltage of Q1 (VGSH) with a 16-bit input DAC (Fig. 19), IG can be 
digitally varied four times at turn-on (Fig. 20). The four periods from 
t1 to t4 are determined by “Timing” signal, and t1 to t4 can be changed 
independently. The same is true for turn-off. 

Fig. 21 shows a die micrograph of HB DAC IC fabricated with 180-
nm BCD process. The die size is 2.5 mm by 1.0 mm. Fig. 22 shows 
a photo of PCB of DGD.  

 

4-3  Measured Results 

Fig. 23 shows a timing chart for the turn-on measurement of the 
conventional single-step gate driving (SGD). n is varied in SGD, 
where n is integers between 0 and 255. m is 60 or 100 in this work. 
Fig. 24 shows the measured n dependence IG in SGD to demonstrate 
the successful operation of 8-bit DGD at VDD3 = VDD4 = 3.5 V and 4 
V and m = 60 and 100. To investigate the performance of DGD itself, 

a 100 mF capacitor is connected to the output of DGD and IG is 
measured. IG is monotonically increasing with n, although it is 
nonlinear. The maximum IG is 58 A. 

Table III shows a comparison table of DGDs. The proposed DGD 
using HB DAC IC and two power MOSFETs achieves the largest 

 
Fig. 18. Circuit schematic of proposed digital gate driver (DGD) 
including HB DAC IC and two power MOSFETs. 

 
Fig. 19. Block diagram of proposed half-bridge digital-to-analog 
converter (HB DAC) IC. 

 
Fig. 20. Timing chart of DGD. 
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Fig. 21. Die micrograph of HB DAC IC. 
 

 
Fig. 22. Photo of PCB of DGD. 
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VSWING of 30 V and the largest IG of 58 A in DGDs. This work is the 
first to demonstrate the advantages of DGD in the high-voltage, 
large-current IGBT modules. 

 

5  Summary and Future Design Challenges 

This paper presents the digital gate driver IC with automatic timing 
control, the single-input dual-output digital gate driver IC for 
equalizing drain current of two parallel-connected SiC MOSFETs, 
and the large current output digital gate driver, which were developed 
to achieve a networked digital gate IC by driving and sensing power 
devices. 

Future design challenges for the digital gate ICs include: (1) sensing 
technology for the operating and degradation states of power 
devices via gate terminals to achieve integrated sensor circuits; (2) 
integration of signal isolators and isolated power supplies into ICs to 
eliminate external bulky transformers; and (3) development of 
algorithms to determine digital gate driver parameters based on 
sensor output to meet customer needs such as loss reduction, noise 
reduction, and failure prediction. 
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